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In this paper, a solution to the problem of thermally induced vibration of a uniform,
simply supported beam is presented. The effect of internal damping on the vibration is
considered. The temperature of the rectangular beam changes as a result of heating by a
laser beam. The centre of the laser spot moves harmonically around a fixed point of the
beam. The exact solution of the problem is obtained by using a Green function method.
From the investigation, it can be concluded that if a frequency of the beam vibration is
a multiple of the harmonic motion frequency of the heat source, then resonance can occur
in the system. A numerical calculation is carried out to illustrate the theory.
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1. INTRODUCTION

Thermally induced vibration of beams has practical importance in space vehicles, reactor
vessels, turbines and other machine parts, which are subjected to variable heating. Analysis
of the behavior of beam structures, which are subjected to heat, have been presented by
Boley [1, 2], Yu [3] and Manolis and Beskos [4].

The vibrations of a simply supported, rectangular beam, subjected to a suddenly applied
heat input distributed along its span, were analyzed by Boley [1]. Approximate analyses
of the effect of damping on the thermally induced motion of beams and plates have been
presented by Boley in reference [2]. In another paper [5], Boley and Barber studied the
dynamic response of simply supported isotropic beams and plates subjected to rapid
heating. Yu [3] extensively explored the problem of thermal flutter of a flexible spacecraft
boom. In this work, the author also studied the effect of viscoelastic damping and a viscous
fluid damper on the stability of the boom motion. Manolis and Beskos [4] examined
thermally induced vibrations of structures composed of beams, which are exposed to rapid
surface heating. The problem was then formulated and solved in the Laplace transform
domain. Here, the effects of damping and of axial loads on the structural response are also
studied. The thermoelastic damping of an isotropic and homogeneous Bernoulli-Euler
beam undergoing flexural vibration were considered by Zener [6] and Kinra and Milligan
[7]. In reference [8] the vibration of a simply supported beam forced by harmonic motion
of lateral force are presented. The vibration problem of a beam and a rectangular plate,
with one surface exposed to a moving heat source, has been investigated in reference [9].
In this investigation, the effect of internal damping was neglected.

In this paper, the problem of thermally induced vibration of a uniform, simply supported
rectangular beam has been studied. The formulation of the problem takes into
consideration the effect of internal damping on the beam vibration. The temperature of
the beam changes as a result of heating by a laser beam. The centre of the laser spot moves
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harmonically around a fixed point of the beam. The solution of the problem is obtained
analytically by applying a Green function method.

2. PROBLEM FORMULATION

The differential equation of thermally induced lateral vibration of the Bernoulli-Euler
beam with the internal damping, can be written in the following form [10].

' 0% v O’My
E’[aﬂ*fax“ax}”azz‘ o M

Here EI is the bending rigidity, p is the mass per unit length of the beam, M is the thermal
moment, v is the lateral beam deflection, f'is the internal damping coefficient of the beam
material, x is the distance along the length of the beam and ¢ denotes time. The thermal
moment is given by

Mi(x, t) = oEh r T(x,y, t)(y — g) dy, 2)

where « is the coefficient of thermal expansion, £ is Young’s modulus, / is the height of
the beam and T is the temperature distribution of the beam. The temperature distribution
T is a function of x, y and ¢ and satisfies the equation of heat conduction with a thermal
diffusivity x [11]:

T 0T 1 10T

5 ()

Here the g(x, y, ) term represents volume energy generation and A is the thermal
conductivity. The volume energy generation is assumed in the form:

%5(y) for Xx(1) — e < x < X(¢) + ¢,

glx,y, 1) = “4)

0 otherwise,

where 6 characterizes the stream of heat and 6( - ) is the Dirac delta function. Then x(7)
describes the movement of the heat source and is assumed as follows (Figure 1):

X(t) = xo + A sin ot, ®)

where 4 + ¢ < xy< L — A — ¢, and L denotes the length of the beam.
Consider the case of the simply supported beam, for which the initial and boundary
conditions are given as follows:

o 0=0, L o=, ©)
2, A2
v0.0 =Ly =0, S50.0=55Ln=0. )

The initial temperature of the beam and the temperature of the beam ends is zero:

T(x,y,0)=0, TO,y,t)=T(L,y,t)=0. 8,9
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Figure 1. A simply supported beam under an applied heat input.

The convection boundary conditions on the surfaces y = 0 and y = / are assumed:

i%(x, O, Z‘) = 70(0[T0* T(xa Oa t)]’ (10)

i%(x, h,t)y=ou[Ty— T(x, h, 1)], an

where o, and o, are the heat transfer coefficients, and 7}, and T are the known temperatures
of the surrounding medium.

3. SOLUTION OF THE PROBLEM

The solution of the problem is obtained by applying a Green function method. The first
step is to determine the temperature distribution of the beam. The temperature distribution
T(x, y, t) as a solution of the differential problem (3) and (8)—(11), is expressed by the
Green function G(x, y, t; &, n, 1) as follows:

. (L
T(x,p, 1) = Ej j [0 ToGrly -0 + ot T1Grly -] A€ dt
0 Jo

Oxc J‘f J"(1)+s
t5.7 Gr(x,y,t;¢,0,7)dE dr. (12)
2el X

X(1)—¢
The Green function Gr is the solution of the equation

kV’Gr + %Cir = —0(x—&o(y —n)o(t — ). (13)
Moreover, the function Gr satisfies the initial and homogeneous boundary conditions
analogous to conditions (8)—(11). This function can be determined by using the method

presented by Carslaw and Jaeger [12]. The function has the form

4 & &1 . mwmx . mwm
Grlx.y. 60 =10 XY o sin T in T ()0, (n) exp(— gt — ). (14)

m=1n=11n
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where
2 gy Dot oot +
qn_u0+ﬁrl+ h a%"_ﬁﬁ’

Y,.(y) = . cos B,y + oo sin Sy,

Yo = K[(T) + ﬁﬁ} mn=172, ...

and f, are roots of the equation
% — B + (a0 + o), ctg fr = 0. (15)

Substituting the Green function (14) into equation (12) gives
— Ay v Lot sin™ Xy
T(xa ya Z) - /’ZL Z Z qz Dmn(t) S L 'Pn(})a (16)

m=1n=11n

where
L
DL = g (1= (=Moo o T (L — exp(—ut)]
20k , sin[mmne/L] .,
+ )b ﬁ“ mTCS/L Kmn(l)
and

(17)

t

KL (1) =3 J exp(—ym(t — 7)) sin [WZX (xo + A sin (pv:):| dr.
0

The integral in equation (17) can be calculated by using the following functional
relationships [13]:
cos (r sinu) =2 Y z:Ju(r) cos 2iu, (18)

i=0

(19)

sin (rsinu) =2 Jy.(r)sin (2i + Du,
i=0

i=

where o =13, yy=1fori=1,2,...,J,(-) denotes the Bessel function of the first kind of
order v. After utilizing the relations (18) and (19), equation (17) yields

A 1
<mn > L) ZUI?I;M([)

MTX) —
Z XfJ 2i

r o
Kmn(t) = sin L =0 L V;%m + 4l q)

MAX) & mnA 1 T
4+ cos I i;() J2i+l< I >Vﬁ1n I (21 T l)zqoz VV,‘W,(Z‘),

where
UL,.(t) = 2i¢p sin 2ipt + y,.[cos 2ipt — exp(—Pml)]
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and
Wi () = P sin 2i + Dot — (2i + D[cos (2i + Dot — exp(—yumt)]-
The thermal moment is found by substituting the function T'(x, y, t), given by equation

(16), into equation (2). After calculating the integral, the function M is as follows:

mmnx

L

(20)

mn
m=1n=11n

where

1 ooh h o) . o%h
z, = 5, <1 3 > cos B.h + <2 + ﬁﬁ) sin f,h — B, (1 + > )

The deflection of the beam is given as a solution of the equation (1) with initial and
boundary conditions (6) and (7). The function v(x, f) can be written in the form

v(x, t) = Ji JL a;ZT G.(x, t; &, t)d¢é dr, 21

where G, denotes the Green function of the differential problem (1) and equations (6) and
(7). This function is a solution of the equation

El[ag +faé4at}+p%§“=é(x—z)é<t—r) 22

and satisfies conditions analogous to equations (6) and (7). The function G, is given as
follows:

G(x,t;¢E,1)= 2Lmzl a,(t — 7) sin T sin Té sin w,,(t — 1), (23)
where
W, = \/él <T>2, Q. =w, [1— (g a),,,>2, Q. = w, <]2( wm>2 -1
and
sinQ(jmu, for w. f< 2,
an,(u) = < u, for w, f= 2,
sin%ﬂ’ for w, f> 2.

Substituting equations (20) and (23) into equation (21), the function v(x, ¢) of the beam

is expressed as
o(x, 1) = ah /E S 21 pr (1) sin o, (24)

m= In 1 ”
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where

L [ - (_ l)m][aOﬁHTO + o T] qln(h)]P;m(Z) + 27/19 ﬁﬂKrL;m(t)a (25)

Ymn MT

D’llﬂ‘l (t)

K(0) = sin 77 Y y,h(”m‘)wm,,(z) + cos 17X 2 sz(m”“‘)m(z) (26)
i=0 =

The functions P, (1), Us,.(¢t) and W3, (t) are calculated as convolutions of the function
g»(1) and functions (1 — exp(—7y..t)), UL, () and W, (1), respectively. These functions for
f=0and w, = ke, keN, are given by the following expressions:

Pi(1) = - (1 = c0s ) + bun(0)

U, (t) = 3P Sin 2ip — 2i¢p cOS 2ipt) — Vb (1), for w, = 2ip,
Wi(t) = —31(pun cO8 (21 + Dt + (2i + 1) sin 2i + Dot) + (2i + 1)@b,u (1),
for w,= Qi+ Do,

where

1 .
5 (Vo SIN Ot — Wy COS Wt + Dy €XP(— Piinl)).

bmn )= "3
0=+

The functions Uj,,(t) and W, () include the terms which cause the increase in the
amplitude of the beam vibration.

The functions P, (¢), U, (¢t) and W, (¢) in the four remaining cases are given in the
Appendix.

4. NUMERICAL RESULTS AND DISCUSSION

The temperature distribution, thermal moment and displacement of the beam are given
by equations (16), (20) and (24). From equation (24) it results that the amplitude of beam
vibration can increase with time ¢. The situation appears for f'= 0, if the natural numbers
m and k exist such that w,, = k¢. In this case the resonance of the system is observed. For
instance, if w,, = 2ip for any natural numbers i and m, then in the sum on the right side
of equation (24) the following member occurs:

0 JE . mnux, mnA 1 .
v(x,t)=ah 7 pll sin — wa< T >V§m s (Yo SIN @t — @, COS Wyt).

The member includes the factor that causes the increase of the vibration amplitude with
time ¢.

A numerical calculation is carried out to illustrate the theory. A uniform, simply
supported, rectangular beam and heat source which changes position harmonically around
the point x = 0-5L is considered. The numerical calculations are performed for the
following data: EI=667-0 [kGm?], p=312 [kg/m], L=10 [m], 4=03 [m],
To =T, =200 [°C], k = 1-29 x 10~° [m?/s], fo = B = 1-45 [1/m]. The numerical values of
the temperature and displacements for a short and long time are displayed in Figures 2
and 3.

The time histories of the temperature of the beam surface, y = 0, in the middle of the
beam, x = 0-5L, for ¢ = 0-2m and 6 = 1000-0 [W/m] are presented in Figures 2(a) and 2(b).
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Figure 2. Time histories of the temperature of the beam surface at x = 0-5L and displacements of the mid-point
of the beam for 4 =0-3L and ¢ = 0-2n s~
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Figure 3. Time histories of the temperature of the beam surface at x = 0-5L and displacements of the mid-point
of the beam for 4 = 0-3L, ¢ = 0-5(n/L)~/
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The beginning of the process is shown in Figure 2(a) and the results for a long time are
presented in Figure 2(b). In Figures 2(c) and 2(d) is shown the displacement of the
mid-point of the beam during the vibrations, with the same data as in Figures 2(a) and
2(b), respectively. In this case the periodic vibrations of the beam are induced by the heat
source. The increase of the temperature in a long period of time is observed and the
vibration of the beam reaches a steady state soon after the beginning of the process. The
results of the displacements for the coefficient of internal damping of the beam material,
f=0, are shown.

The curves of the temperature and displacement of the mid-point of the beam for
@ = 0-5m, = 0-5(n/L)*, 6 = 10000-0 [W/m] are presented in Figure 3. In this case the
condition w, = 2¢ is satisfied, and as a result the resonance of the system is observed
(Figures 3(c) and 3(d)). In Figures 3(b) and 3(d) are shown the histories of the temperature
and displacement for a long time. The displacements of the beam mid-point for the internal
damping coefficient /= 0 (solid line) and /= 10~° (dashed line) are shown in Figures 3(c)
and 3(d). The value of the internal damping coefficient for metals is usually taken between
0-005 and 0-02 [4]. However, to show graphically the effect of the internal damping on
thermally induced beam vibration, the value f'= 107 is assumed.

5. CONCLUSIONS

A study has been carried out into the thermally induced vibrations of a simply supported
Bernoulli-Euler beam. The temperature of the beam is changed by the activity of a heat
source which moves harmonically around a fixed point of the beam. The temperature
distribution and transverse displacement of the beam, in an analytic form, was obtained
by using a Green function method.

It was confirmed that if one frequency of the beam vibration is a multiple of the
harmonic motion frequency of the heat source, then resonance can occur in the system.
From the numerical investigations it results that, in the non-resonant case, the periodic
vibrations of the beam follow immediately after the beginning of the process. In the
resonance case, the increase of the vibration amplitude occurs continually during the
action.

The presented formulation and solution of the vibration problem takes into
consideration the internal damping of the beam material. The effect of the internal
damping on the amplitude of the beam vibration is significant in the resonance case, in
which a considerable decrease in the beam vibration amplitude is observed.
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APPENDIX

The functions P,,(t), U, (1), Wi, (t), that occur in equations (24) and (25) are given
below. Four cases are considered
Case I w,f<2, f#0:

Py (1) = [Al cos Qi + 4 S‘“QQ"”} exp(—3fw}0) + Ay exp(—yut) + A (Al

U:,.(t) = B, cos 2ipt + B, sin 2ipt + [83 cos Q,.t + B, stth] exp(—3 fwir)

+ Bs exp(—Yml), (A2)
. . . . sin Q,,¢
Wiwm(t) = Cicos 2i + et + Cssin 2i + 1)t + [Q cos Q,.t + C, o, }
x exp(—3fwpnt) + Cs exp(—Yuml). (A3)
Case II: o, f=2, f+#0:
Py, (1) = exp(—2t/f )(A, + Aat) + exp(— Yunt)As + A, (A4)

Us,..(t) = B cos 2ipt + B, sin 2ipt + exp(—2t/f )(B; + Bat) + exp(—ymt)Bs, (AS)
W, (1) = Cycos 2i + 1)t + Cysin (2i + Dot + exp(—2t/f )(C; + Cut)
+ eXp(— Pmnt)Cs. (A6)

Case III: w,, f> 2, f# 0. Here the functions P,,,(¢), U;,,(¢t) and W}, (¢) can be obtained
from the equations of case I. The expressions of the terms in these equations should be
changed by replacing cos Q,,¢ and sin Q,,¢/Q,, with cosh Q,,¢ and sinh Q,,/Q,,, respectively.

Case 1V: o, # ke, f=0. In this event the equations of case I are applied. The
coefficients 4, B, C and D in equations (A1)—(A6) are as follows:

— {2 q N
A] - _ an (an fwm)’ 142 - _ /anm [1 + O'Sf('ymn _ fw,%,)],
1

CUmD]
[ 1
A3_ _Dl’ A4_wm’
W ) 5 . 20y, . 5 b
B = D, [V (007, — 4i°@%) — 4f %], B, = %72 [, — 4i%@* — fwrn ],
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_ 2 02 202 2 4
B3 - D1D2 (’ymn + 4l QD )[’))777"(41 (,D wm) +fwm]3
Bo= 5 (o + 4PQI0} (479" — ) = 05fp0) + 05 i), Bi= —Imbn

DID2 mn n m mn m mJls D]

€=~ i 1P 4 g f}],

3
Cx = B (@}, = Qi + 179%) — Qi + 1 g,
3
€, = B0 (2 4 (21 4 1PN, — Qi+ 170+ fi}, — 0],
1473
Qi+ Dow,

Ci= O+ Qi+ D@y (wp — (20 + 1)’¢?)

D\D;
+ 0-5f0,, (0, + 2i + 1)@ — 0-5fwn(frm + 3w,)],

_ Qi+ oo,

Cs D,

D| = V;fm + (,03, - yn7tlfw31» D2 = (4l2q02 - CUZ)Z + 4i2(P2 2(’0217
D; = ((2i + 1)’¢* — w2)* + 2i + 1)’ *w},.



