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In this paper, a solution to the problem of thermally induced vibration of a uniform,
simply supported beam is presented. The effect of internal damping on the vibration is
considered. The temperature of the rectangular beam changes as a result of heating by a
laser beam. The centre of the laser spot moves harmonically around a fixed point of the
beam. The exact solution of the problem is obtained by using a Green function method.
From the investigation, it can be concluded that if a frequency of the beam vibration is
a multiple of the harmonic motion frequency of the heat source, then resonance can occur
in the system. A numerical calculation is carried out to illustrate the theory.
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1. INTRODUCTION

Thermally induced vibration of beams has practical importance in space vehicles, reactor
vessels, turbines and other machine parts, which are subjected to variable heating. Analysis
of the behavior of beam structures, which are subjected to heat, have been presented by
Boley [1, 2], Yu [3] and Manolis and Beskos [4].

The vibrations of a simply supported, rectangular beam, subjected to a suddenly applied
heat input distributed along its span, were analyzed by Boley [1]. Approximate analyses
of the effect of damping on the thermally induced motion of beams and plates have been
presented by Boley in reference [2]. In another paper [5], Boley and Barber studied the
dynamic response of simply supported isotropic beams and plates subjected to rapid
heating. Yu [3] extensively explored the problem of thermal flutter of a flexible spacecraft
boom. In this work, the author also studied the effect of viscoelastic damping and a viscous
fluid damper on the stability of the boom motion. Manolis and Beskos [4] examined
thermally induced vibrations of structures composed of beams, which are exposed to rapid
surface heating. The problem was then formulated and solved in the Laplace transform
domain. Here, the effects of damping and of axial loads on the structural response are also
studied. The thermoelastic damping of an isotropic and homogeneous Bernoulli–Euler
beam undergoing flexural vibration were considered by Zener [6] and Kinra and Milligan
[7]. In reference [8] the vibration of a simply supported beam forced by harmonic motion
of lateral force are presented. The vibration problem of a beam and a rectangular plate,
with one surface exposed to a moving heat source, has been investigated in reference [9].
In this investigation, the effect of internal damping was neglected.

In this paper, the problem of thermally induced vibration of a uniform, simply supported
rectangular beam has been studied. The formulation of the problem takes into
consideration the effect of internal damping on the beam vibration. The temperature of
the beam changes as a result of heating by a laser beam. The centre of the laser spot moves

0022–460X/97/320213+10 $25.00/0/sv970980 7 1997 Academic Press Limited



. -214

harmonically around a fixed point of the beam. The solution of the problem is obtained
analytically by applying a Green function method.

2. PROBLEM FORMULATION

The differential equation of thermally induced lateral vibration of the Bernoulli–Euler
beam with the internal damping, can be written in the following form [10].

EI$14v
1x4 + f

15v
1x41t%+ r

12v
1t2 =

12MT

1x2 . (1)

Here EI is the bending rigidity, r is the mass per unit length of the beam, MT is the thermal
moment, v is the lateral beam deflection, f is the internal damping coefficient of the beam
material, x is the distance along the length of the beam and t denotes time. The thermal
moment is given by

MT(x, t)= aEh g
h

0

T(x, y, t)0y−
h
21 dy, (2)

where a is the coefficient of thermal expansion, E is Young’s modulus, h is the height of
the beam and T is the temperature distribution of the beam. The temperature distribution
T is a function of x, y and t and satisfies the equation of heat conduction with a thermal
diffusivity k [11]:

12T
1x2 +

12T
1y2 +

1
l

g(x, y, t)=
1
k

1T
1t

. (3)

Here the g(x, y, t) term represents volume energy generation and l is the thermal
conductivity. The volume energy generation is assumed in the form:

g(x, y, t)=g
F

f

u

2o

0

d( y) for x̄(t)− oQ xQ x̄(t)+ o,

otherwise,
(4)

where u characterizes the stream of heat and d( · ) is the Dirac delta function. Then x̄(t)
describes the movement of the heat source and is assumed as follows (Figure 1):

x̄(t)= x0 +A sin 8t, (5)

where A+ oQ x0 QL−A− o, and L denotes the length of the beam.
Consider the case of the simply supported beam, for which the initial and boundary

conditions are given as follows:

v(x, 0)=0,
1v
1t

(x, 0)=0, (6)

v(0, t)= v(L, t)=0,
12v
1x2 (0, t)=

12v
1x2 (L, t)=0. (7)

The initial temperature of the beam and the temperature of the beam ends is zero:

T(x, y, 0)=0, T(0, y, t)=T(L, y, t)=0. (8, 9)



Laser beam

2ε
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x(t) = x0 + A sin ϕ t
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Figure 1. A simply supported beam under an applied heat input.

The convection boundary conditions on the surfaces y=0 and y= h are assumed:

l
1T
1y

(x, 0, t)=−a0[T0 −T(x, 0, t)], (10)

l
1T
1y

(x, h, t)= a1[T1 −T(x, h, t)], (11)

where a0 and a1 are the heat transfer coefficients, and T0 and T1 are the known temperatures
of the surrounding medium.

3. SOLUTION OF THE PROBLEM

The solution of the problem is obtained by applying a Green function method. The first
step is to determine the temperature distribution of the beam. The temperature distribution
T(x, y, t) as a solution of the differential problem (3) and (8)–(11), is expressed by the
Green function G(x, y, t; j, h, t) as follows:

T(x, y, t)=
k

l g
t

0 g
L

0

[a0T0GT =h=0 + a1T1GT =h= h ] dj dt

+
uk

2ol g
t

0 g
x̄(t)+ o

x̄(t)− o

GT(x, y, t; j, 0, t) dj dt. (12)

The Green function GT is the solution of the equation

k92GT +
1GT

1t
=−d(x− j)d(y− h)d(t− t). (13)

Moreover, the function GT satisfies the initial and homogeneous boundary conditions
analogous to conditions (8)–(11). This function can be determined by using the method
presented by Carslaw and Jaeger [12]. The function has the form

GT(x, y, t; j, h, t)=
4

hL
s
a

m=1

s
a

n=1

1
q2

n
sin

pmx
L

sin
pmj

L
Cn(y)Cn(h) exp(−gmn(t− t)), (14)
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where

Cn( y)= bn cos bny+ a0 sin bny, q2
n = a2

0 + b2
n +

a0 + a1

h
a0a1 + b2

n

a2
1 + b2

n
,

gmn = k$0mp

L 1
2

+ b2
n%, m, n=1, 2, . . .

and bn are roots of the equation

a2
0 − b2

n +(a0 + a1)bn ctg bnh=0. (15)

Substituting the Green function (14) into equation (12) gives

T(x, y, t)=
4

hL
s
a

m=1

s
a

n=1

1
q2

n
DT

mn(t) sin
pmx
L

Cn(y), (16)

where

DT
mn(t)=

k

lgmn

L
mp

[1− (−1)m][a0bnT0 + a1T1Cn(h)][1−exp(−gmnt)]

+
2uk

l
bn

sin [mpo/L]
mpo/L

KT
mn(t)

and

KT
mn(t)= 1

2 g
t

0

exp(−gmn(t− t)) sin $pmx
L

(x0 +A sin 8t)% dt. (17)

The integral in equation (17) can be calculated by using the following functional
relationships [13]:

cos (r sin u)=2 s
a

i=0

xiJ2i(r) cos 2iu, (18)

sin (r sin u)=2 s
a

i=0

J2i+1(r) sin (2i+1)u, (19)

where x0 = 1
2, xi =1 for i=1, 2, . . . , Jn( · ) denotes the Bessel function of the first kind of

order n. After utilizing the relations (18) and (19), equation (17) yields

KT
mn(t)= sin

mpx0

L
s
a

i=0

xiJ2i0mpA
L 1 1

g2
mn +4i282 UT

imn(t)

+ cos
mpx0

L
s
a

i=0

J2i+10mpA
L 1 1

g2
mn +(2i+1)282 WT

imn(t),

where

UT
imn(t)=2i8 sin 2i8t+ gmn [cos 2i8t−exp(−gmnt)]
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and

WT
imn(t)= gmn sin (2i+1)8t−(2i+1)8[cos (2i+1)8t−exp(−gmnt)].

The thermal moment is found by substituting the function T(x, y, t), given by equation
(16), into equation (2). After calculating the integral, the function MT is as follows:

MT(x, t)= aEh s
a

m=1

s
a

n=1

zn

q2
n
DT

mn(t) sin
mpx
L

, (20)

where

zn =
1
bn 01−

a0h
2 1 cos bnh+0h2+

a0

b2
n1 sin bnh−

1
bn 01+

a0h
2 1.

The deflection of the beam is given as a solution of the equation (1) with initial and
boundary conditions (6) and (7). The function v(x, t) can be written in the form

v(x, t)=g
t

0 g
L

0

12MT

1j2 Gv(x, t; j, t) dj dt, (21)

where Gv denotes the Green function of the differential problem (1) and equations (6) and
(7). This function is a solution of the equation

EI$14Gv

1j4 + f
15Gv

1j4 1t%+ r
12Gv

1t2 = d(x− j)d(t− t) (22)

and satisfies conditions analogous to equations (6) and (7). The function Gv is given as
follows:

Gv(x, t; j, t)=
2

rL
s
a

m=1

am(t− t) sin
pmx
L

sin
pmj

L
sin vm(t− t), (23)

where

vm =XEI
r 0pm

L 1
2

, Vm =vmX1−0 f
2

vm1
2

, V�m =vmX0 f
2

vm1
2

−1

and
sin Vmu

Vm
, for vm fQ 2,

am(u)=g
G

G

G

G

F

f

u, for vm f=2,

sinh V�mu
V�m

, for vm fq 2.

Substituting equations (20) and (23) into equation (21), the function v(x, t) of the beam
is expressed as

v(x, t)= ahXEI
r

s
a

m=1

s
a

n=1

zn

q2
n
Dv

mn(t) sin
pmx
L

, (24)
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where

Dv
mn(t)=

1
gmn

L
mp

[1− (−1)m][a0bnT0 + a1T1Cn(h)]Pv
mn(t)+

2u

l
bnKv

mn(t), (25)

Kv
mn(t)= sin

mpx0

L
s
a

i=0

xiJ2i0mpA
L 1Uv

imn(t)+ cos
mpx0

L
s
a

i=0

J2i+10mpA
L 1Wv

imn(t). (26)

The functions Pv
mn(t), Uv

imn(t) and Wv
imn(t) are calculated as convolutions of the function

gm(t) and functions (1−exp(−gmnt)), UT
imn(t) and WT

imn(t), respectively. These functions for
f=0 and vm = k8, k$N, are given by the following expressions:

Pv
mn(t)=

1
vm

(1−cos vmt)+ bmn(t),

Uv
imn(t)= 1

2t(gmn sin 2i8−2i8 cos 2i8t)− gmnbmn(t), for vm =2i8,

Wv
imn(t)=−1

2t(gmn cos (2i+1)8t+(2i+1)8 sin (2i+1)8t)+ (2i+1)8bmn(t),

for vm =(2i+1)8,

where

bmn(t)=
1

g2
mn +v2

m
(gmn sin vmt−vm cos vmt+vm exp(−gmnt)).

The functions Uv
imn(t) and Wv

imn(t) include the terms which cause the increase in the
amplitude of the beam vibration.

The functions Pv
mn(t), Uv

imn(t) and Wv
imn(t) in the four remaining cases are given in the

Appendix.

4. NUMERICAL RESULTS AND DISCUSSION

The temperature distribution, thermal moment and displacement of the beam are given
by equations (16), (20) and (24). From equation (24) it results that the amplitude of beam
vibration can increase with time t. The situation appears for f=0, if the natural numbers
m and k exist such that vm = k8. In this case the resonance of the system is observed. For
instance, if vm =2i8 for any natural numbers i and m, then in the sum on the right side
of equation (24) the following member occurs:

vr(x, t)= ah
u

lXE
rI

t sin
mpx0

L
Jvm/80mpA

L 1 1
g2

mn +v2
m

(gmn sin vmt−vm cos vmt).

The member includes the factor that causes the increase of the vibration amplitude with
time t.

A numerical calculation is carried out to illustrate the theory. A uniform, simply
supported, rectangular beam and heat source which changes position harmonically around
the point x=0·5L is considered. The numerical calculations are performed for the
following data: EI=667·0 [kG m2], r=3·12 [kg/m], L=1·0 [m], A=0·3 [m],
T0 =T1 =20·0 [°C], k=1·29×10−6 [m2/s], b0 = b1 =1·45 [1/m]. The numerical values of
the temperature and displacements for a short and long time are displayed in Figures 2
and 3.

The time histories of the temperature of the beam surface, y=0, in the middle of the
beam, x=0·5L, for 8=0·2p and u=1000·0 [W/m] are presented in Figures 2(a) and 2(b).
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Figure 2. Time histories of the temperature of the beam surface at x=0·5L and displacements of the mid-point
of the beam for A=0·3L and 8=0·2p s−1.

Figure 3. Time histories of the temperature of the beam surface at x=0·5L and displacements of the mid-point
of the beam for A=0·3L, 8=0·5(p/L)2zEI/r. ——, f=0; – – – –, f=10−5.
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The beginning of the process is shown in Figure 2(a) and the results for a long time are
presented in Figure 2(b). In Figures 2(c) and 2(d) is shown the displacement of the
mid-point of the beam during the vibrations, with the same data as in Figures 2(a) and
2(b), respectively. In this case the periodic vibrations of the beam are induced by the heat
source. The increase of the temperature in a long period of time is observed and the
vibration of the beam reaches a steady state soon after the beginning of the process. The
results of the displacements for the coefficient of internal damping of the beam material,
f=0, are shown.

The curves of the temperature and displacement of the mid-point of the beam for
8=0·5v1 =0·5(p/L)2, u=10 000·0 [W/m] are presented in Figure 3. In this case the
condition v1 =28 is satisfied, and as a result the resonance of the system is observed
(Figures 3(c) and 3(d)). In Figures 3(b) and 3(d) are shown the histories of the temperature
and displacement for a long time. The displacements of the beam mid-point for the internal
damping coefficient f=0 (solid line) and f=10−5 (dashed line) are shown in Figures 3(c)
and 3(d). The value of the internal damping coefficient for metals is usually taken between
0·005 and 0·02 [4]. However, to show graphically the effect of the internal damping on
thermally induced beam vibration, the value f=10−5 is assumed.

5. CONCLUSIONS

A study has been carried out into the thermally induced vibrations of a simply supported
Bernoulli–Euler beam. The temperature of the beam is changed by the activity of a heat
source which moves harmonically around a fixed point of the beam. The temperature
distribution and transverse displacement of the beam, in an analytic form, was obtained
by using a Green function method.

It was confirmed that if one frequency of the beam vibration is a multiple of the
harmonic motion frequency of the heat source, then resonance can occur in the system.
From the numerical investigations it results that, in the non-resonant case, the periodic
vibrations of the beam follow immediately after the beginning of the process. In the
resonance case, the increase of the vibration amplitude occurs continually during the
action.

The presented formulation and solution of the vibration problem takes into
consideration the internal damping of the beam material. The effect of the internal
damping on the amplitude of the beam vibration is significant in the resonance case, in
which a considerable decrease in the beam vibration amplitude is observed.
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APPENDIX

The functions Pv
mn(t), Uv

imn(t), Wv
imn(t), that occur in equations (24) and (25) are given

below. Four cases are considered
Case I: vm fQ 2, f$ 0:

Pv
mn(t)=$A1 cos Vmt+A2

sin Vmt
Vm % exp(−1

2 fv2
mt)+A3 exp(−gmnt)+A4, (A1)

Uv
imn(t)=B1 cos 2i8t+B2 sin 2i8t+$B3 cos Vmt+B4

sin Vmt
Vm % exp(−1

2 fv2
mt)

+B5 exp(−gmnt), (A2)

Wv
imn(t)=C1 cos (2i+1)8t+C2 sin (2i+1)8t+$C3 cos Vmt+C4

sin Vmt
Vmt %

×exp(−1
2 fv2

mt)+C5 exp(−gmnt). (A3)

Case II: vm f=2, f$ 0:

Pv
mn(t)= exp(−2t/f )(A1 +A2t)+ exp(−gmnt)A3 +A4, (A4)

Uv
imn(t)=B1 cos 2i8t+B2 sin 2i8t+exp(−2t/f )(B3 +B4t)+ exp(−gmnt)B5, (A5)

Wv
imn(t)=C1 cos (2i+1)8t+C2 sin (2i+1)8t+exp(−2t/f )(C3 +C4t)

+ exp(−gmnt)C5. (A6)

Case III: vm fq 2, f$ 0. Here the functions Pv
mn(t), Uv

imn(t) and Wv
imn(t) can be obtained

from the equations of case I. The expressions of the terms in these equations should be
changed by replacing cos Vmt and sin Vmt/Vm with cosh V�mt and sinh V�mt/V�m , respectively.

Case IV: vm $ k8, f=0. In this event the equations of case I are applied. The
coefficients A, B, C and D in equations (A1)–(A6) are as follows:

A1 =−
gmn(gmn − fv2

m)
vmD1

, A2 =−
gmnvm

D1
[1+0·5f(gmn − fv2

m)],

A3 =−
vm

D1
, A4 =

1
vm

,

B1 =
vm

D2
[gmn(v2

m −4i282)−4fv2
mi282], B2 =

2i8vm

D2
[v2

m −4i282 − fv2
mgmn ],
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B3 =
vm

D1D2
(g2

mn +4i282)[gmn(4i282 −v2
m)+ fv4

m ],

B4 =
vm

D1D2
(g2

mn +4i282)[v2
n (4i282 −v2

m)−0·5fgmnv
2
m +0·5f 2v6

m ], B5 = −
gmnvm

D1
,

C1 =−
(2i+1)8vm

D3
[v2

m −(2i+1)282 + gmn fv2
m ],

C2 =
vm

D3
[gmn(v2

m −(2i+1)282)− (2i+1)282fv2],

C3 =
(2i+1)8vm

D1D3
(g2

mn +(2i+1)282)[v2
m −(2i+1)282 + gmn fv2

m − f 2v4
m ],

C4 =−
(2i+1)8vm

D1D3
(g2

mn +(2i+1)282)[gmn(v2
m −(2i+1)282)

+0·5fv2
m( f 2v4

m +(2i+1)282)−0·5fv4
m( fgmn +3v2

m)],

C5 =
(2i+1)8vm

D1

D1 = g2
mn +v2

m − gmn fv2
m , D2 = (4i282 −v2)2 +4i282f 2v4

m ,

D3 = ((2i+1)282 −v2
m)2 + (2i+1)282f 2v4

m .


